A Microdot Multilayer Oxide Device: Let Us Tune the Strain-Ionic Transport Interaction

Sebastian Schweiger,* Markus Kubicek, Felix Messerschmitt, Christoph Murer, and Jennifer L. M. Rupp
Electrochemical Materials, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland

ABSTRACT In this paper, we present a strategy to use interfacial strain in multilayer heterostructures to tune their resistive response and ionic transport as active component in an oxide-based multilayer microdot device on chip. For this, fabrication of strained multilayer microdot devices with sideways attached electrodes is reported with the material system Gd$_{0.1}$Ce$_{0.9}$O$_2$ -δ/Er$_2$O$_3$. The fast ionic conducting Gd$_{0.1}$Ce$_{0.9}$O$_2$ -δ single layers are altered in lattice strain by the electrically insulating erbia phases of a microdot. The strain-activated volume of the Gd$_{0.1}$Ce$_{0.9}$O$_2$ -δ is investigated by changing the number of individual layers from 1 to 60 while keeping the microdot at a constant thickness; i.e., the proportion of strained volume was systematically varied. Electrical measurements showed that the activation energy of the devices could be altered by $\Delta E = 0.31$ eV by changing the compressive strain of a single thin straining microdot ceria-based phase by more than 1.16%. The electrical conductivity data is analyzed and interpreted with a strain volume model and defect thermodynamics. Additionally, an equivalent circuit model is presented for sideways contacted multilayer microdots. We give a proof-of-concept for microdot contacting to capture real strain-ionic transport effects and reveal that for classic top-electrode contacting the effect is nil, highlighting the need for sideways electric contacting on a nanoscopic scale. The near order of magnitude ion transport interaction is supported by Raman spectroscopy measurements. These were conducted and analyzed together with fully relaxed single thin film samples. Strain states are described relative to the strain-activated volume of the strained or space charged single layers in the microdot multilayer. These findings reveal that strain engineering in microfabricated devices allows altering the ionic conduction over a wider range beyond classic doping strategies for metal oxide films. The reported fabrication route of strained multilayer microdots is a promising path for applying strained multilayer oxides as active new building blocks relevant for a broad range of microelectrochemical devices, e.g., resistive switching memory prototypes, resistive or electrochemical sensors, or as active catalytic solid state surface components for microfuel cells or all-solid-state batteries.

KEYWORDS: microdot · strain · conductivity · metal oxide · ceria · microdevice · thin film · resistive switching · erbia · Raman · memristor

Lattice strain engineering is being discussed as a new route for tuning material and device properties in metal oxide films through the manipulation of mass and charge transport. Such films could be employed to improve contemporary metal oxide based devices for next generation energy storage and conversion or for new memristive memory and logic devices. For example, the field of nanoionics considers the fabrication and control of ionic and electronic migration by internal interfaces in heterostructures as a promising alternative to classic doping in metal oxides. This is realized by thin film heterostructures where a conventional metal oxide is replaced by repetitions of two oxide materials of varying electrical transport and band structure characteristics. At each oxide film's interface variations in the interatomic distances, space charge, and local chemistry result. Since these are artificial thin film structures, size effects (defined by the total volume of the strained or space charged interface regions) provide a new degree of freedom in tuning the resistive and capacitive contributions. The range through which these parameters can be varied is also far broader than can be achieved for a single metal oxide; in particular because of the difference in the electronic structure at the interface which influences all mobile...
defects, namely electrons, holes, oxygen vacancies and ions. Classic examples of purely ionic (or mixed ionic electronic) conducting heterostructures are metal oxide films composed of an insulating metal oxide such as \(\text{SrTiO}_3 \), \(\text{Al}_2\text{O}_3 \), or \(\text{RE}_2\text{O}_3 \) with \(\text{RE} = \text{Y}, \text{Sc} \) or \(\text{Lu} \), and an ionic conductor such as doped \(\text{CeO}_2 \) or \(\text{ZrO}_2 \)\(^{1-6} \). The total ionic conductivity, which predominantly originates from the small band gap oxide phase (i.e., the ceria or zirconia-based phase), depends on the ionic defect migration and association energies and its oxygen vacancy concentration. These can be actively tuned through the imposed compressive or tensile strain of the insulating phase on the ionic conducting phase. Local variations in the near cationic–anionic order such as changed bond strengths as well as bond breaking and reformation may happen at a strained interface.

The first computational studies revealed that strain at interfaces influences the migration energy barrier for oxygen diffusion.\(^7-9\) First experiments by Sata\(^10\) gave a proof-of-concept for conductivity engineering using artificial \(\text{BaF}_2 /\text{CaF}_2 \) heterostructures. Azad \textit{et al.}\(^1\) showed an increase in the ionic conductivity of 1 order of magnitude for gadolinia-doped ceria/zirconia heterostructures with an increasing number of interfaces from 2 to 16 at constant total film thickness (for 350 °C). This was confirmed by a recent study of Sanna\(^11\) reporting a 1 order of magnitude increase in ionic conductivity and a decrease in activation energy by \(\Delta 0.33 \text{ eV} \) when increasing the number of interfaces from 1 to 19 at constant total film thickness. Garcia-Barriocanal even reported a strong increase of conductivity by 8 orders of magnitude for the heterostructure \(\text{SrTiO}_3/\text{Yttria-stabilized Zirconia (YSZ)} \).\(^6\) This work triggered great interest in the field; however, the results have been debated.\(^12,13\) Yildiz\(^11\) and De Souza\(^14,15\) concluded from computational results that the increase of conductivity due to strain in a \(\text{SrTiO}_3/\text{YSZ} \) heterostructure reaches a theoretical limit at 3 to 4 orders of magnitude; for details see Rupp\(^18,19\) and Omar.\(^20\) Despite the promises of the first results the fundamental issue is how much the ionic conductivity of a fluorite-type oxide can be altered through lattice strain in a heterostructure. The hope for a new generation of electrochemical microdevices stems from the ability to manipulate the strain-ionic transport interaction in metal oxide heterostructures. Nevertheless, up to now electrochemical microdevices, e.g., fuel cells, sensors, batteries or memristive switches,\(^21\) which use strained metal oxides as functional building blocks, simply do not exist. In order to implement ionic heterostructures in commercial applications, an understanding of the strain-related near order changes and ionic transport are a basic requirement. New microfabrication routes to efficiently access the strain modulated resistive and capacitive volumes of the ionic conducting phases in the heterostructures need to be envisioned for new microdevice prototypes and are discussed throughout this work.

What Is Critical for Electric Contacting Strategies on Ionic Heterostructures? The questions requiring attention in order to implement strained ionic heterostructures as functional materials in microdevices concern both the control over the near order interfacial states and new device fabrication routes to access the strained oxide volume’s resistive and capacitive contributions for measurements.

Near Order Interfacial States of Strained Ionic Heterostructures. First, there is a debate on the magnitude of ionic conductivity enhancement for compressively and tensely strained ceria and zirconia phases in heterostructures in literature. In some cases a strong increase is observed, whereas in others no effect is measured for a similarly strained heterostructure oxide material and volume; see Santiso and Burriel\(^22\) or Kühne\(^11\) for details. In this sense, we believe that a critical aspect in comparison of the experimental results is the electrode arrangement and fabrication relative to the strained volume fractions and interfaces of the heterostructure oxides. Conventionally, electrical transport/capacitance is measured in a 2- or 4-point electrode arrangement. Some authors apply the electrodes toward the sides of a grown multilayer on a single crystalline substrate via paste and wire macroscopically.\(^2,23,24\) In that case the electric field lines are always parallel to outer surfaces. Nevertheless it remains within the uncertainty whether all strained volume fractions of the heterostructure (down to a few nanometers in single layer thicknesses) are effectively contacted by this rather macroscopic contacting method. In other cases electrodes were deposited by metal sputtering on top of the heterostructure.\(^25-27\) It is important to note that here the electrodes are applied parallel to the strained interface. For the case that one heterostructure phase...
dominates in fast ionic conduction the electric field lines may be completely restricted to the top single layer and blocked at the insulating phase. Regardless of the effective strain acting on the ionic conducting phase, only the closest ionic conducting single layer to the electrode may contribute to the overall transport, and the biggest fraction of the strained volumes would be missed in its contribution to total conduction.

Second, calculations of strain at the ionic heterostructure interfaces are based on classic long-range cationic structure determination tools like XRD or electron microscopy where anionic lattice positions are calculated but not physically measured. Interestingly, Korte measures inconsistencies in the remaining lattice strain of a single layer with respect to its thickness by XRD. The authors concluded that the effective strained volumes contribute to the total oxygen ionic transport measured; however, structural modulations at the interface could not be resolved by XRD.

Our emphasis is on introduction of Raman spectroscopy as a new tool for systematically investigating changes in anion–cation bond strength with respect to strained volume fractions in ionic heterostructures. The anion–cation bonds are crucial for the ease of oxygen ionic hopping and can even directly be correlated in Raman via computational tools, for example, DFT, to changes in migration and association energies. Recently, Raman studies on strain–transport interaction were reported for single metal oxide films with ionic bonds, i.e., ceria or LaCoO₃, where Raman is also commonly used to characterize strain states in covalently bonded semiconductors like Si, GaN, or graphene. However, to the best of our knowledge Raman studies on ionic conducting heterostructures are still missing in the field.

First Electrochemical Microdevices based on Strained Ionic Heterostructures? To date the fundamentals of strained heterostructures have not been elucidated for electrochemical microdevices. In particular, resistive and capacitive contributions could be altered and triggered over broader ranges and carrier diffusivities and device switch times for different states may be accessed over broader ranges than with classic materials. Interestingly, the majority of reports in the field envision heterostructures as new fast conductive electrolyte materials for microsolid oxide fuel cells operating at intermediate temperatures (~400 °C). But, if we carefully analyze literature one can conclude that the difference in conductivity and diffusion coefficient modulation with respect to strain substantially increases for decreasing operation temperature of the device (see e.g., ref 14 for a computational study and for experimental evidence refs 2, 5, and 24). Therefore, we shift our focus to the new area of memristive information memories and suggest implementing ionic heterostructures as new building blocks for modulating resistive/capacitive contributions of the switches through manipulating the interfacial lattice strain (operating at room temperature); see ref 21. Such devices generally consist of a metal/metal oxide/metal structure. It is imperative to operate the resistive switch with electrodes at small distances, since high local electric field strengths (of the order of >10⁶ V/m) are required to observe nonlinear hysteretic current–voltage profiles.

We suggest replacing the current state-of-the-art single phase metal oxide building block with a multilayer heterostructure made of two metal oxides (A and B) stacked in a repetitive manner (i.e., A—(B—A)n—B) with strained internal interfaces for new types of redox-based resistive switches. The memristive and hysteretic current–voltage characteristics depend on carrier flux. Different resistances can be assigned to binary (or multilevel) states which can be used for digital information storage in new memory devices. Oxide-based resistive switches are a promising alternative to dynamic random-access memory (DRAM) and nonvolatile flash memory used in today’s computing and portable data storage devices due to increased nanosecond-speed operation and low write voltages. These resistive switches could also be used as logic devices and even allow for stacking of multiterminal cross-bar arrays which is superior to classic transistor based lateral stack concepts. In the present paper strain engineering of oxide multilayers is suggested as new strategy to manipulate the properties of metal oxide films. The first strategies to realize such devices in the microscale are demonstrated and discussed. Through this approach resistive and capacitive properties of the multilayer oxide can be manipulated by far more than with classic doping in single films. For this, the two metal oxides Gd₀.₁Ce₀.₉O₂₋₀.₁ and Er₂O₃ as constituents of the sideways contacted multilayer microdots were selected for implementation as the first future strained resistive switching prototypes. Gd₀.₁Ce₀.₉O₂₋₀.₁ was chosen, since it is a well-studied model material under strain as single phase. In addition, first reports on nonstrained ceria-based resistive memories have been reported. One may also highlight that the new structuring concept of the heterostructure microdots may also be implemented in other electrochemical chip devices such as resistive sensors or catalytic active surface electrodes for batteries or fuel cells.

To this end, we develop a microdot device structure for which we establish a new fabrication route to allow for “sideways” and micrometer-scale contacting of strained multilayer Gd₀.₁Ce₀.₉O₂₋₀.₁/Er₂O₃ dots. Unlike traditional means for varying the resistive characteristics of the metal oxide film by doping, we demonstrate in this study that large changes in the resistive characteristics can be obtained by tuning the interfacial multilayer lattice strain of micrometer-sized dots in a microelectrochemical device. Through a variation
of the number of multilayer interfaces and the single layer thickness, compressive strain is imposed on the ionic conducting ceria-based phase by the electrically insulating phase of erbilia. Lattice strain states are measured for the Gd_{0.1}Ce_{0.9}O_2 and Er_{2}O_3 layers within the heterostructures conventionally by XRD and also by Raman spectroscopy as a new approach for characterizing the near order via bond strength changes down to single layer thickness of several nanometers for heterostructures. We discuss the role of compressive lattice strain, and near order changes with decreasing single layer thicknesses ranging from 275 nm down to 3 nm (Gd_{0.1}Ce_{0.9}O_2) and 7 nm (Er_{2}O_3) on ionic conductivity for Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 multilayer oxide dots. Furthermore, we elucidate the importance of the newly proposed contacting strategy at submicrons (vs conventional top electrodes) for strained ionic conducting multilayers over the sides of the microdevice. We also give a proof-of-concept for the electrode design to capture real strain effects in transport. This work presents the first strain-resistance modulation characteristics of heterostructure oxide dots in a microdevice on a chip and provides a basis for a new type of resistive switch.

RESULTS AND DISCUSSION

Fabrication of Strained Oxide Microdevices on a Chip. Microscopy images and schematics of the microdevice structures consisting of strained multilayer Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 thin film dots with pairs of sideways Pt contacts arranged in an array are presented in Figure 1. The light microscopy top-view shows the successfully fabricated array of Pt electrode pairs contacting a strained multi-layer erbia/gadolinia-doped ceria dot at low magnification (Figure 1a). At higher magnification, a free etched erbia/gadolinia-doped ceria multilayer dot structure is visible as a square shaped area with an edge length of \(\sim 15 \mu m\) in interference colors arranged between two Pt electrodes (Figure 1b). Lateral resolved Raman spectroscopy was used to verify that the structured multilayer films were completely free-etched dots with no remains on the substrate. For this, the characteristic vibrational modes with respect to the spot on the chip were analyzed as detailed in Supporting Information S1. A requirement of this work is to deposit and shape Pt microelectrode pairs, which allow for electrical contacting of each multilayer film island structure along all of its strained interfaces and at short electrode distances; see schematic in Figure 1c. For this, a regular pattern of Pt electrodes was deposited onto the free-etched multilayer film islands. The Pt electrodes overlap the island so that the metal contacts the multilayer thin film island at its sloping side walls (Figure 1b:d; schematic and 3D optical profiles). An SEM image of the multilayer film’s cross sections is shown in Figure 1e. For the image recorded with the backscatter detector the different single layer phases of the multilayer oxide film can be visualized by their difference in atomic mass. Here, bright contrast refers to the more strongly back-scattered electrons of the heavy erbium-oxide single layers and darker ones to the lighter ceria single layers. The selected multilayers show a thin film with 290 nm in total film thickness and a set of 3 bilayers of Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 (i.e., the number of Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 interfaces is 5). A single layer thickness of \(\sim 35 \text{ nm}\) of Er_{2}O_3 and 62 nm of Gd_{0.1}Ce_{0.9}O_2 can be determined from the cross-section and is in good agreement with the intended pulsed laser deposition processing conditions of 32 and 64 nm for Er_{2}O_3 and Gd_{0.1}Ce_{0.9}O_2, respectively. All films deposited throughout the study revealed comparable film thicknesses within an error of \(\pm 10\%\) and revealed continuous and dense film microstructures.

In this part, we present a new strategy to prepare sideways contacted multilayer oxide thin film dot arrays to measure along the strained interfaces for small electrode distances of \(\leq 15 \mu m\). This differs to classic contacting strategies for ionic conducting and strained multilayer oxides in the sense that top in-plane electrode measurements have been avoided and electrode distances were reduced by more than 2 orders of magnitude.

In the following, the crystallographic structures, near order and bond length (representative of bond strength) and ionic conductivity characteristics of Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 multilayers and single films are presented as a function of number of interfaces and lattice strain. The role of the interfacial lattice strain and its interaction volume on the ionic conductivity of the fast conducting Gd_{0.1}Ce_{0.9}O_2 phase is next investigated for the multilayer dot microdevice structures.

Lattice Structure and Strain State of the Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 Multilayer Thin Films. The X-ray diffraction patterns of the single Er_{2}O_3 and Gd_{0.1}Ce_{0.9}O_2 films and of Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 multilayer thin films with a varying number of thin films interfaces from 5 to 59 ([Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3] \times 30) are displayed in Figure 2. Detailed information on the XRD scans is available in Supporting Information S2. The diffractograms of the reference single film samples of Er_{2}O_3 and Gd_{0.1}Ce_{0.9}O_2 show single peaks for the first and second order, being the orientations (111) and (222) for Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 and (444) for Er_{2}O_3. Figure 2a. The Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 single film reveals a cubic fluorite structure with a measured lattice parameter of 0.5430 nm, Figure 2b. The (111) orientations observed for the Gd_{0.1}Ce_{0.9}O_2/Er_{2}O_3 films are in agreement with literature. A cubic bixbyite structure with a lattice parameter of 1.061 nm was determined for the Er_{2}O_3 single film. The single film phases and structure types agree with own processed and measured reference ceramic pellets (see Supporting Information S3). Further, this is in agreement with literature; see for...
details on Gd$_{0.1}$Ce$_{0.9}$O$_2$ refs 20 and 52 and for Er$_2$O$_3$ ref 53. It can be concluded that the two materials grow in a 1:2 commensurability in lateral view: the orientation of the (0001) sapphire imposes bi-
axial texture on the single film compounds. The XRD patterns of the single films are compared to multilayer films of Gd$_{0.1}$Ce$_{0.9}$O$_2$/Er$_2$O$_3$ with varying numbers of interfaces from 5 to 59 and a decreasing single layer thickness from 280 to 7 nm (255 to 3 nm for Er$_2$O$_3$). The total thickness of the multilayers was kept constant at approximately 275 nm. All multilayer thin films show the (111) Gd$_{0.1}$Ce$_{0.9}$O$_2$/Er$_2$O$_3$ signature peaks as well as their higher orders. Hence, a successful orientation and biaxial texturing of the individual

Figure 1. Microscope view-graphs of strained Gd$_{0.1}$Ce$_{0.9}$O$_2$ \text/-Er$_2$O$_3$ multilayer microdots and arrays on chip. (a) Top view low magnification light microscopy image of an electrode array contacting sideways islands of Gd$_{0.1}$Ce$_{0.9}$O$_2$ \text/-Er$_2$O$_3$ multilayer microdots on chip. Tungsten needles were used for electrical contacting of the Pt-side contacts. (b) High magnification light microscopy image of Pt electrodes contacting a structured multilayer thin film dot (top view). (c) Schematic view graphic of a strained multilayer Gd$_{0.1}$Ce$_{0.9}$O$_2$/Er$_2$O$_3$ heterostructure. The electrodes that are attached to the side walls of the structure allow measuring the conductivity parallel to the strained Gd$_{0.1}$Ce$_{0.9}$O$_2$/Er$_2$O$_3$ interfaces. (d) Side view and tilted 3D view for a microdot arranged between two metal electrodes by optical surface profilometry. Here, the scale bar refers to the horizontal width (aspect ratio is not to scale). The color bar indicates the measured heights. (e) SEM cross-sectional view of a Gd$_{0.1}$Ce$_{0.9}$O$_2$/Er$_2$O$_3$ multilayer in a microdot. The left side shows a QBSD image and the right side shows a 50% QBSD and 50% In-lens detector image. In the QBSD image the bright contrast phase refers to the Er$_2$O$_3$ (heavy mass) and the dark one to the Gd$_{0.1}$Ce$_{0.9}$O$_2$ (light mass).
single layers in the multilayer toward the (0001) sapphire substrate can be concluded. We observe this independent on the number of interfaces and down to a single layer thickness of 18 nm. On the basis of the diffraction data in growth direction we conclude that the best match for the multilayer growth of the thin film materials is realized in the [111] and [222] orientation for Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ and Er$_2$O$_3$ according to the trifold symmetry of the (0001) plane of the sapphire substrates. Hence, out of geometrical considerations the trifold symmetry of the (111) plane of Er$_2$O$_3$ should correspond to the best match with the trifold symmetry with a 4:3 lattice spacing commensurability in the multilayer.

In general, we observe systematic shifts of the (111) Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ peak toward lower and for the (222) Er$_2$O$_3$ peak toward higher diffraction angle with increasing number of multilayer interfaces from 5 to 13. For higher numbers of multilayer interfaces, erbia and gadolinia-doped ceria (111) and (222) peaks overlap as the shifting progresses (respectively for single layer thicknesses 18 nm), Figure 2a. We interpret this as characteristic features of superlattices with the mean structure peaks surrounded by satellite peaks, in agreement with refs 54 and 55. Similar observations have been made in earlier studies on ionic heterostructures of ceria/8 mol % yttria-stabilized zirconia by Pergolesi25 for single layer thicknesses of 9 nm. The angular positions of the satellite peaks were used to calculate the bilayer thickness, according to the following equation:

$$\Lambda = \frac{\lambda}{\sin \theta_{h} - \sin \theta_{l}}$$

where Λ is the bilayer thickness and $\sin \theta_{h}$ and $\sin \theta_{l}$ are the positions of the first-order satellite peaks of the superlattice. The resulting Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$/Er$_2$O$_3$ bilayer thickness is $\Lambda_{Gd_{0.1}Ce_{0.9}O_{2-\delta}/Er_2O_3} = 10$ nm, which is in very good agreement with the profilometer measurements.

In Figure 2b the out-of-plane lattice constants calculated out of clearly resolved Bragg reflections of the multilayers with 5 to 13 interfaces are shown. The lattice constant of Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ is increased as the thickness of the individual layers is decreased, while the lattice constant of Er$_2$O$_3$ is decreased for a decreasing thickness of the individual layers. The values of these out-of-plane lattice constants are in good agreement with the lattice constants reported in literature.56,57 The out-of-plane lattice constants show an expansion of the lattice for Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ and a compression of the Er$_2$O$_3$ lattice, and reverse behavior can be expected for the in-plane lattice strain.
This means it can be expected that the unit cells relax the strain that is imposed on them along the in-plane-direction in the out-of-plane-direction.58

Implications of the Lattice Strain on Cationic–Anionic Near Order in the Multilayers. We investigated the near order and bond strength characteristics of the single films and multilayers via Raman spectroscopy. This allows direct probing of the Ce–O bond and is therefore very sensitive to changes in the bonding environment. Literature review shows that for the case of Er$_2$O$_3$ data is available on single crystalline material59,60 however, reports on thin film erbia are missing. More data is available for Gd$_{0.1}$Ce$_{0.9}$O$_2$ pellets. Nevertheless reports on thin films are still scarce.19,61,62 First work on thin film erbia reveals one single peak at about 463 cm$^{-1}$ compared to recent reports on Raman characteristics of ceria Raman near order has been recently published.19

Very recently, Kreisel63 reported the use of Raman spectroscopy as a probing tool to characterize the strain states of four oxide films for varying penetration depth. It is surprising that Raman near order-strain studies are still lacking for thin films based on metal oxides, despite their established use for covalently bonded materials under strain.31,32 In Figure 3, spectra for the single thin films and Gd$_{0.1}$Ce$_{0.9}$O$_2$ multilayers are displayed. The reader is referred to Table 1 for Raman mode assignments.

Single film spectra reveal the following characteristics: The spectrum of the Gd$_{0.1}$Ce$_{0.9}$O$_2$ single film sample shows one single peak at about 463 cm$^{-1}$, Figure 3a. This peak can be assigned to the F$_{2g}$ mode in accordance to literature on similar materials processed as macrocrystalline ceramics. This is further consistent with recent reports on Raman characteristics of Gd$_2$O$_3$ PLD thin films.19,64,65 The spectrum of the Er$_2$O$_3$ single thin film reveals 8 measurable Raman active modes. Latter Raman peaks can clearly be assigned to the coupled F$_{2g}$ + A$_e$ and F$_g$ modes60 of erbia and other rare earth bixbyite structures (Sm$_2$O$_3$, Dy$_2$O$_3$, Mn$_2$O$_3$, Sc$_2$O$_3$, In$_2$O$_3$).60 Figure 3a and Table 1. We also compare and confirm through own macrocrystalline doped ceramic standards the assigned peaks for the single thin films (Supporting Information S4). Both single thin film samples, erbia and doped ceria, show additional peaks assigned as “s” originating from the sapphire substrate.

Multilayer Gd$_{0.1}$Ce$_{0.9}$O$_2$ multilayers are also displayed relative to their number of interfaces for their Raman characteristics in Figure 3a. All multilayers investigated exhibited additional peaks compared to the single films. However, all multilayer spectra are very similar to the same number of peaks independent of the number of single layers. Therefore, relative changes between these spectra were investigated in detail.

A peak at about 455 cm$^{-1}$ can be observed that could be the F$_{2g}$ mode of the Gd$_{0.1}$Ce$_{0.9}$O$_2$ component. All other peaks (at higher wavenumbers, i.e., > 460 cm$^{-1}$) are tentatively assigned to the F$_g$ or other modes of the Er$_2$O$_3$ phase. The peak at \sim500 to \sim510 cm$^{-1}$ appears to be a double peak as observable in earlier studies on strained GaN3,34 which is attributed to strain- or orientation-induced mode splitting. However, the peaks are broadened (fwhm$_{\text{singlefilm}}$ = 28 cm$^{-1}$) due to the nanocrystalline morphology of the films, and so it remains unclear exactly how many lines are in the region ranging from \sim400 to 600 cm$^{-1}$ and to which Raman modes they correspond. Furthermore, the modes of the sub-10 nm layers are likely shifted due to phonon confinement effects. Therefore, direct comparison of the peak position of the single film and multilayer spectra is not possible without extensive simulations. However, from careful analysis of the multilayer sample Raman spectra we can observe a systematic trend within the multilayer samples. To obtain the superposed Raman peak signatures of the multilayers, we apply Gaussian fit algorithms.

The fit of the superposed Raman signatures is exemplarily shown for a sample of the 19 interfaces Gd$_{0.1}$Ce$_{0.9}$O$_2$/Er_2O_3 multilayer sample (Figure 3b). For the peak fitting algorithm the peak width was left as a free parameter due to the fact that peaks of different materials and morphologies were fitted and that the peaks could not be assigned beyond doubt. A schematic of the measurement principle is shown in Figure 3c. Here, the principles of XRD and Raman are compared and related to the state at the interface and lattice strain tensor components measured. Dilatational lattice strain can act in three directions of space, denoted ε$_{11}$, ε$_{22}$ and ε$_{33}$. The vectors ε$_{11}$ and ε$_{22}$ form the plane along the multilayer interface of the two adjacent materials with ε$_{33}$ as the out-of-plane component being perpendicular to it. Using Raman confocal microscopy in first approximation the direction parallel to the incident beam is measured (neglecting crystal orientation, the numerical aperture of the objective and the refractive index of the sample). In the backscatter configuration the incident excitation beam is perpendicular to the surface, and hence, in a cubic crystal with ε$_{33}$ \parallel (001) the measured direction is directly proportional to the ε$_{33}$ direction (Figure 3c).

However, in the generalized case Raman spectroscopy is sensitive to all modes with eigenvector components parallel to the beam, which are related to in-plane strain components via the out-of-plane component ε$_{33}$ and the stiffness tensor c$_{ij}$. In the present work, the (111) out-of-plane texture invokes a mixing of modes with out-of-plane components. Consequently, a mode splitting would be expected, but due to the broad line-width of our films, the resulting spectra rather show an additional broadening and shift due to strain.67 The overall shift of the assigned F$_{2g}$ line is recorded by fitting and qualitatively interpreted as strain shift.

The same strain tensor component (ε$_{33}$) is accessed for XRD in Bragg–Brentano configuration. In Figure 3d we summarize the change of Raman shift within the Gd$_{0.1}$Ce$_{0.9}$O$_2$/Er_2O_3 multilayer samples. The peaks
chosen for analysis were the F_{2g} line (tentative assignment) of $\text{Gd}_0.1\text{Ce}_{0.9}\text{O}_2/C\text{O}_\delta$ at $\sim 455 \text{ cm}^{-1}$ and the F_g line at $\sim 520 \text{ cm}^{-1}$ for Er_2O_3. The following observations can be made:

Increasing the number of interfaces and decreasing the single layer thickness of the multilayers results in Raman peak shifts within the compressively strained ceria and tensely strained erbia. For an increasing number of interfaces the F_{2g} mode of ceria blue-shifts by 1.3 cm^{-1} (for increase from 5 to 59 interfaces). At the same time, the Raman erbia F_g mode red-shifts by 1.5 cm^{-1}. Using this strain-induced shift one can use the data provided by high-pressure studies68 to estimate the strain in the heterostructure,67 although we would like to note that strain in thin films cannot be directly compared to hydrostatic pressure. Regarding the elastic modulus used for the calculations one can use the bulk values for Gd-doped ceria,69,70 resulting in change of the strain value of \sim0.1%. But Kossoy71 reported that the elastic modulus of thin films is more than 1 order of magnitude smaller than the value observed in bulk samples, resulting in change of the strain value of \sim1.16% within the multilayer samples. For future discussions we will refer to the value estimated with the thin film elastic modulus.

We interpret this finding as lattice strain originating from the interfaces and relaxing over the thickness of each single layer. Therefore, thinner individual layers lead to increased strain at the heterointerfaces. This occurs for increased volume fractions of strained single layers when increasing the interface numbers within

TABLE 1. Assignment of the Observed Raman Peaks

<table>
<thead>
<tr>
<th>peak (app)/cm$^{-1}$</th>
<th>GDC (pellet)</th>
<th>Er_2O_3 single film</th>
<th>Er_2O_3 single film</th>
<th>assignment</th>
<th>ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>x</td>
<td>x</td>
<td>match w. Sc_2O_3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>x</td>
<td>x</td>
<td>match w. Sm_2O_3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>380</td>
<td>x</td>
<td>x</td>
<td>$F_g + A_g$</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>465</td>
<td>x</td>
<td>x</td>
<td>F_g of GDC</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>x</td>
<td>x</td>
<td>F_g of Er_2O_3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>520</td>
<td>x</td>
<td>x</td>
<td>F_g of Dy_2O_3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>600</td>
<td>x</td>
<td>x</td>
<td>match w. Mn_2O_3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>660</td>
<td>x</td>
<td>x</td>
<td>F_g of Er_2O_3</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>750</td>
<td>x</td>
<td>x</td>
<td>match w. Sm_2O_3</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>

*The peak positions are indicated in the first column and the peaks are assigned to Raman modes, if possible. Otherwise the peaks are matched with Raman spectra of rare earth oxides that crystallize in bixbyite structure.
the multilayered samples. This is in agreement with the data obtained by XRD.

Such behavior was predicted for the Yttria-stabilized zirconia system in density functional theory (DFT) and nudged elastic band (NEB) computational studies.14 Earlier experimental studies reported the cationic order (measured by XRD) to be inconsistent on the single layer thickness or number of interfaces within the experimental error,7 whereas in the present case the trends are consistent within the Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$/Er$_2O_3$ multilayer samples. Obtaining absolute values of the strain-induced Raman line shifts by comparing the Raman spectra of the multilayer samples with the samples of the single films was not possible due to the restrictions mentioned above.

Using this knowledge and data obtained by a high-pressure Raman study and general Raman theory a strain shift increasing the compressive in-plane strain in the Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ and an increasing tensile in-plane shift for Er$_2$O$_3$ can be deduced.

In the given multilayer systems a decrease of single layer thickness of the Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ phase increases the overall strained volume and the magnitude of strain as reported in the structural near order investigations, Figure 3. Through the following we study how the lattice strain affects the activation energy of conductivity for the multilayer microdots.

Impact of Lattice Strain on Electric Transport Characteristics of Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$/Er$_2O_3$ Multilayer for Sideways Contacted Microdot Device. The temperature dependence of conductivity was analyzed in Arrhenius plots for sideways contacted single and multilayer dots with respect to the strain activated volumes of the conductor, as shown in Figure 4a. The Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ single film shows the highest conductivity with an activation energy of 0.75 eV in accordance with refs 18, 19, and 72. Increasing the number of Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$/Er$_2O_3$ interfaces and reducing the single layer thickness (down to 7 nm) for the small band gap Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ results in an increase of ionic activation energy. The activation energy of conductivity is increased from 0.75 eV for the single film to 1.06 eV for the 59 interfaces sample, a change of activation energy $\Delta E_g = \Delta 0.31$ eV for \sim1.16% compressive strain imposed by the erbia phase of the multilayer on the Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$, Figure 4b,c. This trend is consistent throughout all multilayer samples. We attribute the increase in activation energy of ionic migration for the imposed compressive strain of erbia to the increased pressure acting on the strain activated volumes on the Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ in consistency with eq 8–10. This corresponds to a change in enthalpy of oxygen migration of 0.31 eV for the strained Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ phases of the multilayer according to the model expressed in eq 10. Further, the inset of Figure 4b shows the contacting strategy necessary to obtain measured data along the strained $\{ε_{11} \times ε_{22}\}$ Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ layers. Figure 4c displays the decrease of ionic conductivity while minimizing the thickness of the individual Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ single layers and maximizing the strain volume for the ceria-phase. It can be concluded that a clear impact of the compressively strained volumes of the small band gap conductor on its ionic transport is revealed for sideways contacted microdot structures. Accordingly, we summarize in Figure 4d that all strained ceria-based single layers contribute to the overall transport of the microdot structures through the pathways P1 + P3 outlined in the circuit model. The insulating wide band gap erbia single layers of the dot do not contribute with the pathways P2 + P4, but act as strain modulators of the ceria-phase for the microdot.

Defect Thermodynamic Model for Strain-Modulated Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$/Er$_2O_3$ Multilayer Microdot Device Structures. In the following, we discuss the concept of sideways contacted Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ and Er$_2$O$_3$ multilayer microdots in their ionic transport characteristics for modified interfacial strains. For a multilayer microdot, the gadolinia-doped ceria single layers represent the small band gap phase with a band gap of 3.1 eV73 and a predominantly oxygen ionic conductivity with an activation energy of ionic conductivity of \sim0.75 eV in air for bulk.77 On the other hand the erbia single layers of the multilayer dots are the wide band gap phase with a band gap of 7.6 eV74 and an ionic activation energy of \sim1.6 eV in air for bulk.75 On the basis of bulk transport data, it is to be expected that the erbia single layer phases block the electric field lines for sideways contacting in the multilayer. The current is carried by the ionic conducting Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ single layers of the multilayer microdot for sideways electrode arrangements measuring along the strained interfaces. The erbia’s sole function in the multilayer is to modify the interatomic distances locally at the interface by imposing a compressive strain on the ionic current carrying Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ phase. We keep the film thickness in all experiments constant and vary systematically the number of interfaces and single layer thicknesses of Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ and Er$_2$O$_3$ phases in the multilayers. Consequently, we consider that due to big differences in the conductivity of the two materials, either the Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ or the interfaces are relevant for the conduction, while the bulk Er$_2$O$_3$ phase is an electrical insulator and only serves as matrix to achieve the desired strain state variation in the Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ (GDC) phase by the lattice misfit of the two adjacent materials: The lattice misfit f between the two materials, erbia and gadolinia-doped ceria with the lattice constants a_{GDC} and a_{ErO}_3, in the following denoted as $a_{ε}$, (since the Gd$_{0.1}$Ce$_{0.9}$O$_2$$_{-δ}$ phase is the conducting phase under strain) with respect to erbia is defined as

$$f = \frac{a_{ErO}_3 - a_{ε}}{a_{ErO}_3}$$

and gives a numerical value of the theoretical lattice misfit of 2.74%, acting compressively on the
Gd$_{0.1}$Ce$_{0.9}$O$_2$ single layers. The ionic conduction of the latter small band gap phase is described by an oxygen ion hopping mechanism via oxygen vacancies, which are the predominant charge carrier introduced through

Figure 4. Ionic conductivity for the sideways contacted and strain modulated Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$/Er$_2$O$_3$ multilayer microdots. (a) Arrhenius plot of the conductivity for Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ single thin film vs Gd$_{0.1}$Ce$_{0.9}$O$_2$//Er$_2$O$_3$ multilayer thin film microdots for sideways contacting. The numbers next to the specimens indicate the number of bilayers. (b) Activation energy with respect to the thickness of the individual single layer thickness of Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$. The measurement setup is shown in the inset. The total change of activation energy is $\Delta 0.31$ eV. The inset shows the measurement setup that allows measurement of the whole multilayer structure. The open symbol refers to the single film. (c) Plot of electric conductivities of the Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ single thin film and Gd$_{0.1}$Ce$_{0.9}$O$_2$//Er$_2$O$_3$ multilayer thin films with respect to the thickness of Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ for 365 °C. The open symbol refers to the single film. (d) Schematic view graphic on conduction pathways and electronic circuit model for the Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$//Er$_2$O$_3$ multilayer microdots. Left: Model of the current flow in the specimen for RGDC, REr$_2$O$_3$. Here, the ionic current flows through all semiconducting layers of the Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ phase. The Er$_2$O$_3$ phase does not contribute to the electric conductivity, but serves as phase to tune the compressive strain acting on the Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ phase of the microdot structure. Right: Equivalent circuit model and ionic pathways of the microdot device. The yellow shading indicates the flow of the ionic current along P1 + P3 and strain modulation within the Gd$_{0.1}$Ce$_{0.9}$O$_{2-\delta}$ RC circuit elements of a microdot. Blocking for the strain modulating pathways P2 + P4 is indicated. Total thin film structure thickness was kept constant at 275 nm.
doping, as shown in eq 3.

\[
\text{Gd}_2\text{O}_3 + \text{CeO}_2 \rightarrow 2\text{GdCe}^3_+ + 3\text{O}_2^- + V_0^{\infty}
\]

(3)

The wide-band gap phase erbia reveals p-type conduction as predominant mechanism in air.\(^7^5\) The predominant fast ceria-based ionic conductivity, \(\sigma_{\text{ionic}}\), of the multilayer microdot for measurement along the interfaces is given by

\[
\sigma_{\text{ionic}}(T) = \frac{(2q)^2[V_0^{\infty}]^2}{k_B T} \exp \left(-\frac{\Delta H_{\text{mig}}}{k_B T} \right)
\]

(4)

2\(q\) represents the charge of an oxygen vacancy, \([V_0^{\infty}]\) refers to the oxygen vacancy concentration, \(v_i\) stands for the ionic mobility, \(v_0\) is the pre-exponential ionic mobility factor, \(\Delta H_{\text{mig}}\) is the enthalpy of oxygen vacancy migration, and \(k_B\) is Boltzmann’s constant. For the sake of completeness it has to be mentioned that the overall measured ionic activation energy \(E_a\) of the strained volumes consists of the enthalpy of oxygen vacancy migration \(\Delta H_{\text{mig}}\) and the enthalpy of oxygen vacancy-dopant associate formation \(\Delta H_{\text{assoc}}\) through

\[
\Delta E_a = \Delta H_{\text{mig}} + \Delta H_{\text{assoc}}
\]

(5)

We consider predominantly the migration enthalpy to change, and refer for discussion of defect associations to refs 77–82. Therefore, in the following the activation energy is treated to be represented in good approximation by the migration enthalpy. The total volume change is negligibly small for solids; therefore, energy and enthalpy are considered to be equal.

One can express eq 4 in terms of the oxygen ionic diffusion coefficient, \(D_{\text{ionic}}\), being proportional to the square of the jump distance \(d\) and its oxygen ionic hopping frequency \(\omega\) by

\[
\sigma_{\text{ionic}}(T) = \frac{(2q)^2[V_0^{\infty}]^2}{k_B T} \frac{D_{\text{ionic}}}{\pi D_{\text{ionic}}} = \frac{(2q)^2[V_0^{\infty}]^2}{k_B T} \omega d^2
\]

(6)

\[
\frac{(2q)^2[V_0^{\infty}]^2}{k_B T} \sigma_{\text{ionic}} = \frac{D_{\text{ionic}}}{\pi D_{\text{ionic}}} = \frac{1}{\pi^2} \omega d^2
\]

(7)

The jump distance \(d\) is directly related to the lattice constant \(a_i\) of the \(\text{Gd}_{0.1}\text{Ce}_{0.9}\text{O}_{2-\delta}\) and strain state due to its cubic fcc lattice structure nature, eq 6. For oxygen ionic hopping over vacancies in the strained fcc lattice the geometry factor \(\alpha_i = 1\). It is important to note that modifications of the strain tensor elements may lower symmetry and, hence, affect in eq 6 both the geometry factor and strained lattice constant \(a_i\) for the conducting \(\text{Gd}_{0.1}\text{Ce}_{0.9}\text{O}_{2-\delta}\). This could also potentially alter Poisson’s ratio.

We can assume the only quantity that is significantly influenced by strain is the migration enthalpy \(\Delta H_{\text{mig}}\); all other quantities are hardly affected by strain.\(^2^8,^3^3,^3^4\) Thermodynamically the \(\text{Gd}_{0.1}\text{Ce}_{0.9}\text{O}_{2-\delta}\) strain activated volume, \(\Delta V_{\text{mig}}\), of ionic migration (and possible contributions of association, included in the migration enthalpy) depends on the applied hydrostatic pressure \(p\) imposed by the erbia single layers in the multilayer dot; this is in accordance to De Souza’s models\(^8^3,^8^4\) and is described in good approximation by the following equation:

\[
\Delta V_{\text{mig}} = \frac{\partial G_{\text{mig}}}{\partial p_{\text{eff}}}
\]

(8)

where \(\Delta G_{\text{mig}}\) stands for the Gibbs’s energy of migration. The Gibbs’s free energy is given by

\[
\Delta G_{\text{mig}} = \Delta E_{\text{mig}} - T\Delta S_{\text{mig}} - \sigma\Delta V_{\text{mig}}
\]

(9)

for a system influenced by the strain tensor \(\sigma\). Neglecting the activation entropy and considering the case of biaxial strain, we can rewrite eq 8 using eq 9 to

\[
\Delta H_{\text{mig}} = \Delta E_{\text{mig}} - \frac{2}{3} \sigma_{\alpha\alpha} \Delta V_{\text{mig}}
\]

(10)

The biaxial strain \(\sigma_{\alpha\alpha}\) is then given by

\[
\sigma_{\alpha\alpha} = \frac{3B(1 - 2\nu a - a_i)}{1 - \nu a_i}
\]

(11)

\(B\) denotes the bulk modulus, \(\nu\) Poisson’s ratio, and \(a\) and \(a_i\) the lattice constants of the unstrained and strained material, respectively. Using the lattice mismatch and above presented equations the activation volumes of the strained multilayer thin film samples could be calculated; see Table 2. The resulting strain activated volumes range from 3.03 to 7.22 cm\(^3\) mol\(^{-1}\) and correspond to a change in ionic activation energy of 0.75 to 1.06 eV for an increase of 6 to 60 single layers in the multilayer, i.e., \((\text{Gd}_{0.1}\text{Ce}_{0.9}\text{O}_{2-\delta} / \text{Er}_2\text{O}_3) \times 3\) to \((\text{Gd}_{0.1}\text{Ce}_{0.9}\text{O}_{2-\delta} / \text{Er}_2\text{O}_3) \times 30\). Using the consideration of elastic moduli in bulk and thin film samples presented above this corresponds to a change of strain of 0.1 or 1.16%, estimated from Raman spectroscopy. For the constants used in the calculations; see refs 69–71. The change in activation volume is increased for highly strained structures. De Souza states that the activation volume of fluorite-structured oxides is 1 to 2 cm\(^3\) mol\(^{-1}\) for pressures below 1 GPa.\(^8^3\)

<table>
<thead>
<tr>
<th>specimen</th>
<th>strain activation volume/cm(^3) mol(^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\text{Gd}{0.1}\text{Ce}{0.9}\text{O}_{2-\delta} / \text{Er}_2\text{O}_3) \times 3)</td>
<td>3.03</td>
</tr>
<tr>
<td>((\text{Gd}{0.1}\text{Ce}{0.9}\text{O}_{2-\delta} / \text{Er}_2\text{O}_3) \times 10)</td>
<td>5.96</td>
</tr>
<tr>
<td>((\text{Gd}{0.1}\text{Ce}{0.9}\text{O}_{2-\delta} / \text{Er}_2\text{O}_3) \times 30)</td>
<td>7.22</td>
</tr>
</tbody>
</table>

TABLE 2. Calculated Strain Activation Volumes for the Multilayer Thin Film System Investigated

Role of Microelectrode Contacting and Geometry in Measuring Strain-Ionic Transport Modulations for Microelectrochemical Devices. State-of-the-art electrical contacting operates either via placing of top in-plane electrode contacts on a strained multilayer film or by macroscopically...
painting metal electrodes at the sides of the multilayer structure.\(^5,8,5\) As discussed in the introduction both strategies may not be applicable for implementation of strained multilayer oxides as functional building blocks for new microelectrochemical chip devices. Nevertheless, we exemplify the state-of-the-art contacting of similarly strained Gd\(_{0.1}\)Ce\(_{0.9}\)O\(_2\)/Ce\(_{0.5}\)O\(_{2-x}\)/Er\(_2\)O\(_3\) multilayers via deposition of top in-plane electrodes contacting. The activation energy remains invariant on the strain state of the multilayer. The classic measurement setup is not suited to measure real strain effects on ionic transport.

CONCLUSION

We demonstrate a new strategy to fabricate ionic conducting gadolinia-doped ceria/erbia multilayer films. The yellow shading indicates the flow of the ionic current going only along P1 (topmost layer). All other pathways P2–P4 do not contribute to the electronic circuit.
dot array structures, illustrate the feasibility of sideways dot contacting for 2 orders of magnitude smaller distances (15 μm) toward the state-of-the-art, and show that the ionic conductivity activation energy of the small conducting ceria-based phase can be manipulated by the compressively imposed strain activated volumes through the erbia for a multilayer dot.

All multilayer thin film dots show the orientation aimed for; i.e., successful biaxial texturing of the metal oxide thin films on the sapphire substrates can be concluded. To get insight into the interfacial state, Raman spectroscopy was applied to investigate the cation–anion-near order. Changes in the strain state can be correlated to a relative change of the positions of the Raman shifts and the sensitivity of this method allows observing increasing strain at the interface as the proportion of strained volume is increased. Regarding the activation energy, a change of Δ0.31 eV can be observed for ~1.16% relative strain for the ceria-based phase in the multilayer samples.

Our findings have the following implications for the future design of microelectrochemical devices based on strain oxide modulation.

First, a strategy to fabricate such electrochemical heterostructures as microdevices is presented. This strategy allows exploiting the altered flux of charge carriers along the interfaces parallel to the surface for a sideways controlled ionic conducting multilayer dot. For example, our work opens the possibility to replace classic single metal oxide films in future resistive switches by a functional strained multilayer dot. The broad range for which we can alter the ionic conductivity activation energy through compressive strain, in the given example of ceria single layers for the multilayer dot, would not be achievable by classic doping or changes of nonstoichiometry for a resistive switch functional oxide film. Hence, we can use the interfacial strain of such multilayer dots and short electrode distances to actively tune the desired resistive properties in their memristive and memcapacitive properties in follow-up studies. The short electrode distances were a prerequisite to reach typical local electric field strengths of about >10⁶ V/m. The presented fabrication strategy together with the concept of microdots with strained internal interfaces is a promising avenue for novel electrochemical microdevices, e.g., energy conversion and storage devices, information technology devices, or sensors.

Second, we contribute with a hands-on proof-of-concept to the ongoing debate on the role of microelectrode contacting for strained ionic conducting multilayers. Revealing that the classical top-in-plane electrode approach is not suitable to measure real strain effects for the given case of erbia/gadolinia-doped ceria multilayers, the change in activation energy is nil for a broad range of number of interfaces varied (ranging from a single layer thickness from 300 to 6) even though there is structural proof for strain. Measuring the same multilayer structures with the sideways contacted microdot approach reveals that a real strain effect is indeed measured. Defect thermodynamics and strain activated volume model were well applied to describe the change of conductivity and activation energy for the multilayers.

Third, to date it was challenging to compare strain-ionic transport results obtained by different research groups for multilayer systems based on zirconia or ceria single layers as a conductive phase. Looking forward, the quantitative analysis of near order and ionic bond strength of the anionic-cationic lattice that can be measured by Raman spectrometers its potential with respect to a multilayer’s film growth, processing, and chemistry. State-of-the-art literature considers cationic disorder to be characterized by XRD, and so very often no clear trends were observable relative to the varying strain activated volumes. However, we report that there are observable near order relaxation processes relative to the strain activated volume occurring on the near order and confirm earlier computational study predictions.

METHODS

Material Synthesis. Gd0.1Ce0.9O2–δ and Er2O3 single thin films and multilayer thin films composed of the two oxide materials were synthesized in this study.

The thin films were deposited on round single crystalline, double-side polished (0001)-oriented sapphire substrates (Stettler sapphire, Switzerland) by pulsed laser deposition (PLD, Surface Technologies, Germany; KrF excimer laser, 248 nm). The thin films were deposited at 60 μJ per pulse at a repetition rate of 10 Hz for a substrate-to-target distance of 8.5 cm. After reaching a background pressure of 4 × 10⁻³ mbar, the films were deposited at 700 °C and 0.0267 mbar O₂ pressure. In this study a constant film thickness of 275 nm was aimed for all samples (single films and multilayers). This corresponds to 14 000 pulses for the Gd0.1Ce0.9O2–δ single film sample, 21 000 pulses for the multilayer heterostructure samples, and 26 000 pulses for the Er2O3 single film sample.

Subsequent profilometer measurements Dektak XT Advanced profilometer (Bruker, Germany) and SEM cross-sectional analysis were used to verify the constant film thickness within an error of 10% throughout this study. For the multilayer PLD depositions repetitions of Gd0.1Ce0.9O2–δ and Er2O3 single layers were deposited on the sapphire substrates. The single layer thickness of either Gd0.1Ce0.9O2–δ or Er2O3 was varied from 280 (255) to 7 (3) nm while the overall film thickness was kept at constant 275 nm. As a consequence, the number of Gd0.1Ce0.9O2–δ/Er2O3 interfaces varied from 5 to 59 within the films, corresponding to a number of single layers of 6 to 60 in the multilayer structures, also denoted as (Gd0.1Ce0.9O2–δ/Er2O3) x 3 to (Gd0.1Ce0.9O2–δ/Er2O3) x 30. Substrates were always cleaned in an ultrasonic bath with acetone, isopropanol, and deionized water prior to film deposition.

Ceramic targets for the pulsed laser deposition, Gd0.1Ce0.9O2–δ (Praxair, Woodinville, WA) and Er2O3 (Sigma-Aldrich, Switzerland)
were processed from powders. The targets were uniaxially and then isostatically pressed (440 bar for 2 min) from powder, heated to 1650 °C (Er2O3)/1400 °C (Gd0.1Ce0.9O2δ) at 5 °C/min, isothermally held for 24 h (Er2O3)/4 h (Gd0.1Ce0.9O2δ) and then cooled at 5 °C/min to room temperature. The target phases were characterized by X-ray Diffraction (Bruker D8, Cu Kα).

Microdevice and Electrode Preparation: Lithography and Microfabrication. In this experimental part sideways attached electrodes were designed and microprocessed to measure conduction properties along the strained multilayer interfaces for small electrode distances of 15 μm; see Figure 6. Two challenges had to be considered in the planning: First, multilayers with variable number of interfaces had to be etched under an angle of roughly 80° toward the substrate to subsequently deposit metal electrodes that contact all single layers and strained interfaces over the sides of the microdevice. Next, a second lithography step was required to allow for electrode depositions at 15 μm distance and an overlap of roughly 2 μm between the top of the multilayer film and its side flank. It is to be noted that we report a new micropatterning route for the fabrication of sideways electric contacting of strained multilayer oxides with small scale microelectrodes.

In the following we detail the experimental fabrication steps for the small-scale “side-plane” microelectrodes; see schematic in Figure 6. All steps were carried in an ISO class 4 cleanroom. Multilayer thin films on sapphire samples (Figure 6a) were subjected in a first photolithography step similar to the first one was done using AZ nLOF 2070 (1:0:4) negative photoresist (Microchemicals, Germany) and AZ 1518 positive photoresist (Microchemicals, Germany). After the first pattern of regularly distributed photoresist islands was made on the sample surface at a rotation speed of 4000 rpm for 30 s and baked at 100 °C for 120 s. The samples were then aligned (Karl-Suss MJ83 mask aligner) and exposed through a foil lithography mask to broadband ultraviolet light with a dose of 74 mJ/cm² (Figure 6b). The pattern was developed using MIF 726 developer (Microchemicals, Germany). After the first pattern of regularly distributed photoresist islands was made on the samples the ceramic thin film was dry-etched using argon ion (Ar⁺) sputtering (Oxford Instruments Plasmalab 80) (Figure 6c). Subsequently, the remaining photoresists was removed using acetone. In order to get well-defined electrodes a second photolithography step similar to the first one was done using AZ nLOF 2070 (1:0:4) negative photoresist (Microchemicals, Germany). The samples were spin at a speed of 4750 rpm for 45 s and then softbaked at 110 °C for 90 s. The second photoresist pattern was aligned over the ceramic microdots by visual alignment overlapping 2 μm with the help of alignment marks. Then they were exposed to a light dose of 210 μJ/cm², and subsequently the photoresists was subject to another heating step at 110 °C for 180 s (Figure 6d). Finally the pattern was developed using the MIF 726 developer.

In the last step metal electrodes constituting of Ti 25 nm/Pt 150 nm were deposited via electron beam evaporator (Plassys MEB 550, France). Ultimately, the samples were soaked in acetone until the remaining photoresist was stripped off, as determined by visual inspection. The height profile of the microdot island was investigated by optical surface profilometry (Sensofar Plu neo, Spain).

Chemical and Structural Characterization. The as-deposited single and multilayer films were characterized by X-ray Diffraction (Bruker D8) at a Cu Kα wavelength. Raman spectroscopy was performed using a confocal WITec CRM200 Raman microscope instrument (WITec, Germany) equipped with a 532 nm wavelength laser for excitation and a spectral resolution of 0.7 cm⁻¹. Fitting was done by OriginPro 9.1 using a Gaussian function. The error of the fit ranges from 0.14 to 0.017%. One fit is depicted exemplarily in Figure 3b. Materials were characterized with a scanning electron microscope (SEM, LEO 1530, Germany) to analyze the microstructures.

Electrical Characterization. DC 4-point electric conductivity measurements of the thin film microdevice structures were performed in air using the Keithley 2601B multimeter for kinetic measurements with applied DC voltage amplitude of 1 V. The thin film microdevice structures were contacted with tungsten microprobe tips in a custom fabricated microprobe station (Evebeeing, Taiwan and Electrochemical Materials ETH Zurich, Switzerland) with a sealed air atmosphere environment, equipped with stereomicroscopy. The temperature was varied during the measurements between room temperature and 585 °C at heating/cooling rates of 5 °C/min. To get kinetic reference data measurements were done on bulk pellets contacted by Pt paste and wire in a tube furnace. The temperature range was from room temperature to 1000 °C with heating/cooling rates of 5 °C/min.

Conflict of Interest: The authors declare no competing financial interest.

Acknowledgment. The authors want to thank M. Suess from the Laboratory for Nanometallurgy for fruitful discussions, Prof. R. Spolenak from the Laboratory for Nanometallurgy for use of the Raman spectrometer, and Prof. R. Nesper and Dr. M. Wörle for the use of the XRD facility. Furthermore, the authors thank Y. Shi for the optical profilometry measurements. Funding of this project was supported by the Swiss National Science Foundation Projects 138914, 147190, and 144988 and is gratefully acknowledged. J.L.M Rupp and M. Kubicek gratefully acknowledge I2CNER, the WPI initiative, Japan, for travel support.

Supporting Information Available: Section 1 provides spatially resolved Raman scans of the microdot array. Section 2 shows detailed XRD Scans of the thin film samples. Section 3 presents the XRD patterns of pellets used for sample preparation. Section 4 compares the Raman spectra of Gd0.1Ce0.9O2δ